Activity of Matrix Metalloproteinase-7 (MMP-7) Related to Heparin-Binding Epidermal Growth Factor (HB-EGF) Activation in Squamous Cell as Diagnostic Biomarker for Early Detection And Treatment of Maxilarian Cancer: Review Article

Gregorius William Thongiratama, Gede Arya Diva Dhananjaya, Happy Kusuma Mulya, I Made Winarsa Ruma

Abstract


Background: Squamous cell carcinoma (SCC) has a higher chance of occurance and progression in maxillary sinus cancer than other paranasal sinus cancers (80%). Matrix metalloproteinase-7 (MMP-7) is a protease specified in collagen type IV degradation and Heparin Binding Epidermal Growth Factor activation, which causes an increase in squamous cell carcinoma proliferation and metastasis

 

Methods: This review aims to identify the potential role of MMP-7 as a target for prevention and therapeutic modality to manage SCC sinus maxillary cancer. We did literature searching in several databases to elucidate the importance of the MMP-7 pathway in SCC sinus maxillary cancer progression.

 

Results: : Increasing expression and activity of MMP-7 are associated with maxillary sinus cancer progression. Squamous cells, the most impacted in maxillary sinus cancer, sustain dysplasia due to heparin-binding epidermal growth factor (HB-EGF) activation into EGF by MMP-7 and Cluster of Differentiation 44 (CD44) binding complexes that trigger high proliferation and mitogenic activity. The therapeutic function of MMP-7 occurs by affecting the protein 53 (p53) in cancer cell apoptosis initiation by specific interaction with CD44.

 

Conclusion: MMP-7 could be an alternative therapeutic target and potential treatment option for maxillary sinus cancer. Furthermore, more trials should be done to test the relevancy of MMP-7 uses as an SCC sinus maxillary cancer modality

Keywords


CD44, HB-EGF, MMP-7, SCC, sinus maxillary cancer

Full Text: View | Download

DOI: 10.33371/ijoc.v18i1.1028

Article Metrics

Abstract View: 75,
PDF Download: 26
             

References


Chan J, Yom SS. Nasal cavity and paranasal sinus cancer. In: Handbook of Evidence-Based Radiation Oncology [Internet]. 2018 [cited 2021 Nov 30]. p. 159–69. Available from: https://www.cancer.net/cancer-types/nasal-cavity-and-paranasal-sinus-cancer/statistics

Bossi P, Farina D, Gatta G, Lombardi D, Nicolai P, Orlandi E. Paranasal sinus cancer [Internet]. Vol. 98, Critical Reviews in Oncology/Hematology. Crit Rev Oncol Hematol; 2016 [cited 2021 Nov 30]. p. 45–61. Available from: https://pubmed.ncbi.nlm.nih.gov/26520459/

Sun Y, Chen Y, Li S, Lei Y, Xu D, Jiang N, et al. NanoVelcro-captured CTC number concomitant with enhanced serum levels of MMP7 and MMP9 enables accurate prediction of metastasis and poor prognosis in patients with lung adenocarcinoma. Int J Nanomedicine. 2017;12:6399–412.

Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis [Internet]. 2019;36(3):171–98. Available from: https://doi.org/10.1007/s10585-019-09966-1

Chatzipantelis A, Brown SJ, Campbell A. The role of the general dental practitioner in the detection of squamous cell carcinoma of the maxillary antrum. Dent Update. 2018;45(1):71–5.

Elgart K, Faden DL. Sinonasal Squamous Cell Carcinoma: Etiology, Pathogenesis, and the Role of Human Papilloma Virus. Curr Otorhinolaryngol Rep. 2020;8(2):111–9.

Liang Y, Guo S, Zhou Q. Prognostic value of matrix metalloproteinase-7 expression in patients with non-small cell lung cancer. Tumor Biol. 2014;35(4):3717–24.

Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs [Internet]. Vol. 31, Journal of Enzyme Inhibition and Medicinal Chemistry. Taylor & Francis; 2016 [cited 2021 Nov 8]. p. 177–83. Available from: https://www.tandfonline.com/doi/abs/10.3109/14756366.2016.1161620

Nohata N, Hanazawa T, Kikkawa N, Sakurai D, Fujimura L, Chiyomaru T, et al. Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br J Cancer. 2011;105(6):833–41.

Ke P, Wu Z De, Wen HS, Ying MX, Long HC, Qing LG. Current evidence on associations between the MMP-7 (-181A>G) polymorphism and digestive system cancer risk. Asian Pacific J Cancer Prev. 2013;14(4):2269–72.

Yao Q, Kou L, Tu Y, Zhu L. MMP-Responsive ‘Smart’ Drug Delivery and Tumor Targeting. Trends Pharmacol Sci [Internet]. 2018;39(8):766–81. Available from: https://doi.org/10.1016/j.tips.2018.06.003

Liao HY, Da CM, Liao B, Zhang HH. Roles of matrix metalloproteinase-7 (MMP-7) in cancer. Clin Biochem [Internet]. 2021;92(March):9–18. Available from: https://doi.org/10.1016/j.clinbiochem.2021.03.003

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol [Internet]. 2014 Oct 5 [cited 2021 Nov 6];740:364. Available from: /pmc/articles/PMC4146684/

Hyunsoo JN. How does chemotherapy work- InformedHealth. 2019 Aug 15 [cited 2021 Dec 21];1–4. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279427/

Padma VV. An overview of targeted cancer therapy. BioMedicine [Internet]. 2015 Dec 1 [cited 2021 Dec 21];5(4):1–6. Available from: /pmc/articles/PMC4662664/

Bavi P, Bu R, Uddin S, Al-Kuraya K. MMP7 polymorphisms - A new tool in molecular pathology to understand esophageal cancer. Saudi J Gastroenterol. 2011;17(5):299–300.

Caley MP, Martins VLC, O’Toole EA. Metalloproteinases and Wound Healing. Adv Wound Care. 2015;4(4):225–34.

Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41(2):271–90.

Agarwal P, Ballabh R. Expression of type IV collagen in different histological grades of oral squamous cell carcinoma: An immunohistochemical study. J Cancer Res Ther. 2013;9(2):272.

Lei Z, Jian M, Li X, Wei J, Meng X, Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: state of the art and recent advances. J Mater Chem B [Internet]. 2020 Apr 29 [cited 2021 Nov 8];8(16):3261–91. Available from: https://pubs.rsc.org/en/content/articlehtml/2020/tb/c9tb02189b

Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pacific J Cancer Prev. 2015;16(6):2129–44.

Kelppe J, Thorén H, Haglund C, Sorsa T, Hagström J. MMP-7, -8, -9, E-cadherin, and beta-catenin expression in 34 ameloblastoma cases. Clin Exp Dent Res. 2021;7(1):63–9.

Musia K, Zwolińska D. Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis. Apoptosis [Internet]. 2011 Jul 23 [cited 2021 Nov 23];16(7):653–9. Available from: https://link.springer.com/article/10.1007/s10495-011-0604-2

Yu WH, Wu E, Li Y, Hou HH, Yu S su C, Huang PT, et al. Matrix Metalloprotease-7 Mediates Nucleolar Assembly and Intra-nucleolar Cleaving p53 in Gefitinib-Resistant Cancer Stem Cells. iScience. 2020 Oct 23;23(10):101600.

Mbanefo EC, Kikuchi M, Huy NT, Shuaibu MN, Cherif MS, Yu C, et al. Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum. PLoS Negl Trop Dis [Internet]. 2014 [cited 2021 Nov 24];8(1):e2644. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002644

Tanikawa C, Zhang Y zhong, Yamamoto R, Tsuda Y, Tanaka M, Funauchi Y, et al. The Transcriptional Landscape of p53 Signalling Pathway. EBioMedicine. 2017 Jun 1;20:109–19.

Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol [Internet]. 2019;20(4):199–210. Available from: http://dx.doi.org/10.1038/s41580-019-0110-x

Guo XX, Li Y, Sun C, Jiang D, Lin YJ, Jin FX, et al. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells. Protein Cell. 2014;5(3):224–34.

Zaman S, Wang R, Gandhi V. Targeting the Apoptosis Pathway in Hematologic Malignancies. Leuk Lymphoma [Internet]. 2014 [cited 2021 Nov 24];55(9):1980. Available from: /pmc/articles/PMC4152229/

Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013;32(27):3286–95.

Ory B, Ramsey MR, Wilson C, Vadysirisack DD, Forster N, Rocco JW, et al. Erratum: A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma (Journal of Clinical Investigation (2011) 121:2 (809-820) DOI:10.1172/JCI43897). J Clin Invest. 2014;124(3):1418.

Tian J, Hu L, Li X, Geng J, Dai M, Bai X. MicroRNA-130b promotes lung cancer progression via PPARγ/VEGF-A/BCL-2-mediated suppression of apoptosis. J Exp Clin Cancer Res [Internet]. 2016;35(1):1–15. Available from: http://dx.doi.org/10.1186/s13046-016-0382-3

Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother [Internet]. 2019;110(November 2018):400–8. Available from: https://doi.org/10.1016/j.biopha.2018.11.112

Shaik JA, Reddy RK. Review Article Prevention and Treatment of White Spot Lesions in Orthodontic Patients. Contemp Clin Dent. 2017;8(September):11–9.

Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol [Internet]. 2011;13(3):317–23. Available from: http://dx.doi.org/10.1038/ncb2173

Paik WH yu., Song BJ u., Kim HW o., Kim HR e., Hwang JH yeo. MicroRNA-200c as a Prognostic Biomarker for Pancreatic Cancer. Korean J Gastroenterol. 2015;66(4):215–20.

Kumar S, Nag A, Mandal C. A Comprehensive Review on miR-200c, A Promising Cancer Biomarker with Therapeutic Potential. Curr Drug Targets [Internet]. 2015 Oct 14;16(12):1381–403. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-4501&volume=16&issue=12&spage=1381

Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–13.

Essmann F, Schulze-Osthoff K. Translational approaches targeting the p53 pathway for anti-cancer therapy [Internet]. Vol. 165, British Journal of Pharmacology. Wiley-Blackwell; 2012 [cited 2021 Dec 15]. p. 328–44. Available from: /pmc/articles/PMC3268188/

Zhang LN, Li JY, Xu W. A review of the role of Puma, Noxa and Bim in the tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia. Cancer Gene Ther. 2013;20(1):1–7.

Kilbride SM, Prehn JHM. Central roles of apoptotic proteins in mitochondrial function [Internet]. Vol. 32, Oncogene. Nature Publishing Group; 2013 [cited 2021 Dec 16]. p. 2703–11. Available from: https://www.nature.com/articles/onc2012348

Choudhry N, Sarmad S, Waheed NA, Gondal AJ. Estimation of serum matrix metalloproteinases among patients of oral squamous cell carcinoma. Pakistan J Med Sci [Internet]. 2019 [cited 2021 Nov 29];35(1):252–6. Available from: /pmc/articles/PMC6408633/

Bobinskas AM, Wiesenfeld D, Chandu A. Influence of the site of origin on the outcome of squamous cell carcinoma of the maxilla - Oral versus sinus. Int J Oral Maxillofac Surg [Internet]. 2014;43(2):137–41. Available from: http://dx.doi.org/10.1016/j.ijom.2013.09.008

Yang S, Liu C, Hong C, Huang Z, Wang H, Wei L, et al. Autoantibodies against p53 , MMP-7 , and Hsp70 as Potential Biomarkers for Detection of Nonmelanoma Skin Cancers. 2021;2021.

Sidorkiewicz I, Niczyporuk M. Plasma Concentrations of Matrilysins MMP-7 and MMP-26 as Diagnostic Biomarkers in Breast Cancer. 2021;

Board PATE. Paranasal Sinus and Nasal Cavity Cancer Treatment (Adult) (PDQ®). PDQ Cancer Inf Summ [Internet]. 2019 Aug 22 [cited 2021 Nov 6]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK65831/

Praveena NM, Maragathavalli G. Carcinoma of the Maxillary Antrum: A Case Report. Cureus [Internet]. 2018 May 13 [cited 2021 Dec 21];10(5). Available from: https://www.cureus.com/articles/12192-carcinoma-of-the-maxillary-antrum-a-case-report

Cancer Research UK. Maxillary sinus cancer TNM stages and grades | Cancer Research UK [Internet]. 2017 [cited 2021 Dec 21]. Available from: https://www.cancerresearchuk.org/about-cancer/nasal-sinus-cancer/stages-grades/maxillary-sinus-tnm

Robbins KT, Ferlito A, Silver CE, Takes RP, Strojan P, Snyderman CH, et al. Contemporary management of sinonasal cancer. Head Neck [Internet]. 2011 Sep 1 [cited 2021 Nov 6];33(9):1352–65. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/hed.21515

Noronha V, Patil VM, Joshi A, Krishna MV, Dhumal S, Juvekar S, et al. Induction Chemotherapy in Technically Unresectable Locally Advanced Carcinoma of Maxillary Sinus. Chemother Res Pract [Internet]. 2014 May 11 [cited 2021 Dec 21];2014:1–6. Available from: /pmc/articles/PMC4037593/

Li K, Ricker K, Tsai FC, Hsieh CJ, Osborne G, Sun M, et al. Estimated cancer risks associated with nitrosamine contamination in commonly used medications. Int J Environ Res Public Health [Internet]. 2021 Sep 1 [cited 2021 Nov 28];18(18). Available from: /pmc/articles/PMC8467924/

Narayan Biswal B, Narayan Das S, Kumar Das B, Rath R. Alteration of cellular metabolism in cancer cells and its therapeutic. J oral Maxillofac Pathol. 2017;21(3):244–51.

D M, B S, P S, K M, Thomas J. Squamous Cell Carcinoma Arising From a Psoriatic Plaque - A Case Report. Int J Dermatopathol Surg [Internet]. 2016 Jan 25 [cited 2021 Nov 30];2(1):24–6. Available from: https://scienztech.org/index.php/ijds/article/view/24

Goldenberg A, Ortiz A, Kim SS, Jiang SB. Squamous Cell Carcinoma with Aggressive Subclinical Extension: 5-year Retrospective Review of Diagnostic Predictors. J Am Acad Dermatol [Internet]. 2015 Jul 1 [cited 2021 Nov 30];73(1):120. Available from: /pmc/articles/PMC4475462/

Miyata K, Yotsumoto F, Nam SO, Kuroki M, Miyamoto S. Regulatory mechanisms of the HB-EGF autocrine loop in inflammation, homeostasis, development and cancer. Anticancer Res. 2012;32(6):2347–52.

Ozbilgin K, Karaca F, Turan A, Köse C, Vatansever S, Ozcakir T. The higher heparin-binding epidermal growth factor (HB-EGF) in missed abortion. Taiwan J Obstet Gynecol. 2015 Feb 1;54(1):13–8.

Saada-Bouzid E, Peyrade F, Guigay J. Molecular genetics of head and neck squamous cell carcinoma. Curr Opin Oncol [Internet]. 2019 May 1 [cited 2021 Dec 15];31(3):131–7. Available from: https://pubmed.ncbi.nlm.nih.gov/30893149/

Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 2020 Apr;61:71–83.

Tacheva T, Dimov D, Anastasov A, Zhelyazkova Y, Kurzawski M, Gulubova M, et al. Association of the MMP7-181A>G promoter polymorphism with early onset of chronic obstructive pulmonary disease. Balk J Med Genet [Internet]. 2017 Dec 29 [cited 2021 Nov 27];20(2):59–66. Available from: https://www.sciendo.com/article/10.1515/bjmg-2017-0023

Yuan S, Lin LS, Gan RH, Huang L, Wu XT, Zhao Y, et al. Elevated matrix metalloproteinase 7 expression promotes the proliferation, motility and metastasis of tongue squamous cell carcinoma. BMC Cancer [Internet]. 2020 Jan 14 [cited 2021 Nov 6];20(1). Available from: /pmc/articles/PMC6958600/

Ke B, Fan C, Yang L, Fang X. Matrix Metalloproteinases-7 and Kidney Fibrosis. Front Physiol [Internet]. 2017 Feb 10;8(MAR):3389. Available from: http://journal.frontiersin.org/article/10.3389/fphys.2017.00192/full

Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta - Proteins Proteomics [Internet]. 2012;1824(1):146–56. Available from: http://dx.doi.org/10.1016/j.bbapap.2011.09.003

Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem [Internet]. 2021;224:113714. Available from: https://doi.org/10.1016/j.ejmech.2021.113714

Liang L, Dong M, Cong K, Chen Y, Ma Z. Correlations of Moesin expression with the pathological stage, nerve infiltration, tumor location and pain severity in patients with pancreatic cancer. J BUON. 2019;24(3):1225–32.

Supit IA, Pangemanan DHC, Marunduh SR. Profil Tumor Necrosis Factor (Tnf-Α) Berdasarkan Indeks Massa Tubuh (Imt) Pada Mahasiswa Fakultas Kedokteran Unsrat Angkatan 2014. J e-Biomedik. 2015;3(2).

Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol [Internet]. 2016;37(9):11553–72. Available from: http://dx.doi.org/10.1007/s13277-016-5098-7

Sato S, Drake AW, Tsuji I, Fan J. A Potent Anti-HB-EGF Monoclonal Antibody Inhibits Cancer Cell Proliferation and Multiple Angiogenic Activities of HB-EGF. PLoS One. 2012;7(12):1–12.

Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel). 2013;5(6):1180–201.

Vinante F, Rigo A. Heparin-Binding Epidermal Growth Factor-like Growth Factor/Diphtheria Toxin Receptor in Normal and Neoplastic Hematopoiesis. Toxins (Basel) [Internet]. 2013 Jun [cited 2021 Nov 30];5(6):1180. Available from: /pmc/articles/PMC3717776/

Lue HW, Yang X, Wang R, Qian W, Xu RZH, Lyles R, et al. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One [Internet]. 2011 Nov 16 [cited 2021 Nov 30];6(11). Available from: /pmc/articles/PMC3218022/

Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell Commun Signal [Internet]. 2011;9(1):18. Available from: http://biosignaling.biomedcentral.com/articles/10.1186/1478-811X-9-18

Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem [Internet]. 2016 Nov 1;31(sup1):177–83. Available from: https://www.tandfonline.com/doi/full/10.3109/14756366.2016.1161620

Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) [Internet]. 2017 May 17 [cited 2021 Nov 23];9(5). Available from: /pmc/articles/PMC5447962/

Gaffney DC, Soyer HP, Simpson F. The epidermal growth factor receptor in squamous cell carcinoma: An emerging drug target. Australas J Dermatol. 2014;55(1):24–34.

Sasaki E, Nishikawa D, Hanai N, Hasegawa Y, Yatabe Y. Sinonasal squamous cell carcinoma and EGFR mutations: a molecular footprint of a benign lesion. Histopathology. 2018;73(6):953–62.

Wang S, Zhang J, Wang T, Ren F, Liu X, Lu Y, et al. Endocytic degradation of ErbB2 mediates the effectiveness of neratinib in the suppression of ErbB2-positive ovarian cancer. Vol. 117, International Journal of Biochemistry and Cell Biology. 2019.

Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol [Internet]. 2011 [cited 2021 Nov 23];12(11):233. Available from: /pmc/articles/PMC3334591/

Jung YS, Liu XW, Chirco R, Warner RB, Fridman R, Kim HRC. TIMP-1 Induces an EMT-Like Phenotypic Conversion in MDCK Cells Independent of Its MMP-Inhibitory Domain. PLoS One [Internet]. 2012 Jun 11 [cited 2021 Nov 23];7(6):38773. Available from: /pmc/articles/PMC3372473/

Vočka M, Langer D, Fryba V, Petrtyl J, Hanus T, Kalousova M, et al. Serum levels of TIMP-1 and MMP-7 as potential biomarkers in patients with metastatic colorectal cancer. Int J Biol Markers [Internet]. 2019 Sep 1 [cited 2021 Nov 23];34(3):292–301. Available from: https://journals.sagepub.com/doi/full/10.1177/1724600819866202

Wang Q, Gao P, Wang X, Duan Y. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci Rep [Internet]. 2014 [cited 2021 Nov 6];4. Available from: www.nature.com/scientificreports


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Indonesian Journal of Cancer

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.