Major Microbiota Profile of Breast Cancer From Faecal Specimen and Cancerous Breast Tissue: A Comprehensive Systematic Review

Annisa Annisa 1*, **Rachma Greta** 1, **Solikhah Solikhah** 2

1 Department of Histology, Faculty of Medicine, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
2 Public Health Science Faculty, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

ARTICLE INFO

Received : 20 February 2023
Reviewed : 13 March 2023
Accepted : 24 May 2023

Keywords:
breast cancer, microbiota

ABSTRACT

Background: The microbiota population in breast cancer tissue is known to have a crucial role in the tumor microenvironment supporting developmental ability. Despite a heterogeneous profile, the relationship between microbiota and breast cancer is still not fully understood. Therefore, this study aimed to explain the major microbiota profile associated with breast cancer and explore potential biological connections.

Methods: Following the PRISMA guidelines, the literature review investigated the diverse composition of microbiota profiles in breast cancer patients compared to those in normal conditions. Utilizing the PICO framework, a comprehensive search was conducted on the Pubmed and Google Scholar databases. The searches were restricted to open-access articles from the last 5 years. Additionally, critical appraisals are conducted for quality assessment.

Results: A total of 145 articles were identified using the relevant keywords, out of which 17 successfully passed filtering and screening for inclusion in the review. Major microbiota observed in breast cancer patients included *firmicutes*, *proteobacteria*, *actinobacteria*, and *bacteroidetes*. The microbiota profile was influenced by factors such as cancer subtype, menopausal history, and tumor severity. These microorganisms play a role in the inflammatory response to their metabolite products and modulate hormonal changes, potentially enhancing tumor survival.

Conclusions: Generalizing the expression of microbiota profile both in the gut or its tissue might be challenging due to its multifactorial nature, dependent on patient characteristics such as age, menopausal status, BMI, tumor grade, and subtype. The study suggests that the major microbiota that shows increased prevalence in breast cancer include *firmicutes*, *proteobacteria*, *actinobacteria*, *bacteroidetes*, and *blautia*, each playing a distinct role in the developmental process.

INTRODUCTION

The human body contains at least 100 trillion microbes, collectively known as microbiota, which begins its development from birth. These microbes colonize the mucous lining of several organs, especially in the digestive system (70%). The microbiota plays a crucial role in macronutrient metabolism, energy retrieval, and storage, as well as actively interacting with the immune system to form immunity. It is recognized that the composition of the gut microbiota, termed dysbiosis, can impact local organs and systemic functions, thereby influencing overall health conditions, both normal and pathological. Dysbiosis is identified as a risk factor for several diseases, including cancer [1].

Some bacterial colonizations are implicated in several cancers. For instance, *Helicobacter pylori* colonization is associated with gastric cancer, and increased populations of *Bacteroides fragilis*, *Fusobacterium nucleatum*, and *Peptostreptococcus anaerobius* play a role in colorectal cancer. In contrast, the microbiota linked with breast cancer remains heterogeneous [2,3]. Since the discovery of the microbiota population in the breast, it has been recognized that interaction between the gut and the breast microbiota contributes to the development of breast cancer. These microorganisms may originate from the spread through the lymphatic vessels or the nipples.
Quality assessment
This systematic review adopted the critical appraisal method for journal analysis. To avoid bias and subjective understanding, the literature obtained was analyzed using a study quality assessment based on JBI, accessed via https://jbi.global/critical-appraisal-tools. The articles included were required to meet at least a score of 50% on the checklist questions. A comprehensive analysis was conducted by assessing the title, abstract, and full content of the manuscript. Data synthesis was then performed descriptively.

RESULTS
A total of 145 literature matching the designated keywords were identified in the 2 databases used for the search, as presented in Table 1. Following the utilization of the Rayyan intelligence device, 7 duplicates were identified and subsequently excluded. The remaining 138 pieces of literature were filtered according to the study objectives, using title and abstract as criteria. Subsequently, a total of 90 articles corresponding to the scope were subjected to further eligibility assessment. Finally, 17 studies were included in this systematic review (Figure 1).

Figure 1. PRISMA diagrams of literature review

Microbiota in breast cancer patient
Breast cancer is categorized into several subtypes based on molecular characteristics, namely luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive, and triple negative. The microbiota...
population in breast cancer had heterogeneity, influenced by variations in histological appearance, tumor grade, lymph node status, and the presence of predictive markers such as estrogen receptors and HER2. Several factors, including hormonal status and breast cancer subtype, can influence the dynamics of the microbiota population. Microorganisms play essential roles in disease, impacting both the intestine and extra-intestine in different ways. Several references state that the microbiota of the breast in the mammary duct was obtained through the lactation process. Activation of immune cells has the potential to transfer microbiota from breast tissue to the intestine or vice versa through the enteromary route. Through metabolic regulation, immune cell response, and inflammatory processes, the microorganisms are known to have local and systemic impacts on the process of carcinogenesis. Therefore, the most frequently used method for examining microbiota in breast cancer includes analyzing both breast tissue and stool specimens. The major microbiota found in this study are represented in Table 2.

DISCUSSION

The effect of the human microbiome on hormonal changes, metabolites, and immunologic pathways, crucial in carcinogenesis is well-documented. These factors may contribute to cell death evasion, lipid metabolism alteration, and regulation of hormonal products, sustaining cancer cell growth and progression [9]. Several studies have shown that age differences, Body Mass Index (BMI), cancer subtype, and menopausal status significantly affect the microbiota profile of breast cancer patients [9,10]. The well-documented breast microbiota in lactating women has prompted a study into its potential impact on breast cancer, showing a complex and multifactorial interconnection between microbiota and the disease.

The identified microbiota in breast cancer patients include *Firmicutes*, *Proteobacteria*, *Actinobacteria*, *Bacteroidetes*, and *Blautia*, each with varying degrees of influence. Elevated level of *Firmicutes* and *Bacteroidetes* correlates with increased fibrosis, given

Table 2. The major microbiota profile studies in breast cancer patients

<table>
<thead>
<tr>
<th>Authors</th>
<th>Methodology</th>
<th>Hormonal Status</th>
<th>Age (mean)</th>
<th>Population</th>
<th>Microbiota profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson, et al (2017)[11]</td>
<td>16S rRNA sequencing</td>
<td>HER2+, ER+, triple negative</td>
<td>-</td>
<td>Cancerous breast tissue</td>
<td>Proteobacteria (48%), Actinobacteria (26.3%), Firmicutes (16.2%)</td>
</tr>
<tr>
<td>Tzeng, et al (2021)[12]</td>
<td>16S rRNA sequencing</td>
<td>HER2+, ER+</td>
<td>57</td>
<td>Fresh-frozen breast cancer tumor</td>
<td>Proteobacteria, with either Firmicutes or Actinobacteria</td>
</tr>
<tr>
<td>Hieken, et al (2022)[14]</td>
<td>16S rRNA sequencing</td>
<td>ER+</td>
<td>60</td>
<td>Benign and malignant breast tissue</td>
<td>Firmicutes, staphylococcus</td>
</tr>
<tr>
<td>Kim, et al (2021)[16]</td>
<td>16S rRNA sequencing</td>
<td>ER+ (59.6%), ER-(40.4%), HER2- (70.2%), HER2+ (29.8), PR+(53.2%), PR- (46.8%)</td>
<td>54</td>
<td>Breast cancer tissue</td>
<td>Proteobacteria and Firmicutes, Actinobacteria</td>
</tr>
<tr>
<td>Lasagna, et al (2022)[18]</td>
<td>16S rRNA sequencing</td>
<td>ER/PR+ and HER2-</td>
<td>Stool specimen from breast cancer patient</td>
<td>Firmicutes and Bacteroidetes</td>
<td></td>
</tr>
<tr>
<td>Wenhui, et al (2022)[19]</td>
<td>16S rRNA sequencing</td>
<td>ER+ (71.9%), ER-(28.1%), HER2- (28.1%), HER2+ (71.9%), PR+(31.2%), PR- (68.8%)</td>
<td>53</td>
<td>fecal samples from normal controls, breast cancer patients</td>
<td>Bacteroidetes, firmicutes and proteobacteria, fusobacteria, actinobacteria</td>
</tr>
<tr>
<td>Maryann, et al (2022)[20]</td>
<td>16S rRNA sequencing</td>
<td>ER/PR+</td>
<td>64</td>
<td>fecal samples from normal controls, breast cancer patients</td>
<td>Blautia and ruminococcaceae, Bifidobacterium animalis</td>
</tr>
</tbody>
</table>

rRNA: ribosomal RNA; ER: Estrogen Receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor-2
their connection to adipocytes and fat metabolism [11,12,21,13,24,25]. These bacteria modulate releases of serine palmitoyl transferase enzymes in the formation of sphingolipids from ceramide sphingolipids. The upregulation of fat is known to be a source of energy for tumor growth in the process of carcinogenesis. Furthermore, *Firmicutes and Bacteroidetes* play a role in the colonic metabolism of indigestible nutrients, dietary fibers, and polyphenols [11,21,22,24,25].

The impact of gut microbiota extends to the regulation of the estrogen hormone, especially in menopausal patients. Microbes, including estrobiome, activate enzymes conjugating estrogen metabolites for excretion and circulation in active form. Specific microbiota such as *Firmicutes*, *Proteobacteria*, *Clostridium*, and *Blauitia*, can catalyze the hydrolysis of inactive glucuronidated estrogens through β-glucuronidases and β-glucosidases enzymes [11,12,21]. This process increases the reabsorption of the active form of estrogen through enterohepatic circulation, potentially contributing to the carcinogenesis of breast cancer. Elevated systemic estrogen levels contribute to increased risk and severity of the disease. The gut microbes can also synthesize estrogen-like compounds or break down estrogen mimics by the various potencies [11,12,15,21,28].

This study provided information to explain the connection of microbiota to breast cancer based on current investigation through heterogeneous data. The complex relationship between microbiota and the disease comprises roles in metabolite processes, hormonal regulation, and immune pathways. To confirm the molecular pathways, further investigation through large-scale, specific randomized controlled trials engaging breast cancer patients is essential.

CONCLUSIONS

The expression of microbiota profile either in gut or tissue was not generalized due to its multifactorial nature, influenced by various patient characteristics such as age, menopausal status, BMI, tumor grade, and subtype. The study suggested that the major microbiota associated with increased instances of breast cancer were *Firmicutes*, *Proteobacteria*, *Actinobacteria*, *Bacteroidetes*, and *Blautia*. These microbial components play distinct roles in the development of the disease.

DECLARATIONS

Competing of interests

The authors have no conflict of interest.

Acknowledgments

Not applicable

Funding

This study was supported by Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Ahmad Dahlan Yogyakarta.

REFERENCES